能源與動力工程學院
                            舊版入口| 學校主頁| 加入收藏 | 設為首頁

                            師資隊伍

                            teaching staff

                            熱點文章

                            站內搜索

                            教授

                            當前位置: 首 頁 > 師資隊伍 > 工程熱物理系 > 教授 > 正文
                            姓 名 劉德歡 性 別
                            職 稱 教授 畢業學校 臺灣大學
                            個人主頁
                            聯系方式
                            郵 箱 thliu@hust.edu.cn
                            通訊地址
                            個人資料簡介
                            劉德歡,臺灣臺中人,1984年7月出生。研究領域為納米尺度能量輸運、第一性原理計算與分子動力學模擬。目前共發表論文20余篇。
                            Researcher ID:L-9159-2018
                            Google Scholar:https://scholar.google.com/citations?user=fQd38KwAAAAJ&hl

                            教育及工作經歷

                              2002.09-2006.06    中央大學,機械工程學系,本科。
                              2006.09-2008.06    臺灣大學,應用力學研究所,碩士。
                              2008.09-2012.06    臺灣大學,應用力學研究所,博士。
                              2013.05-2014.12    臺灣大學,博士后研究員。
                              2015.01-2019.01    麻省理工學院,博士后研究員。
                              2019.02-至今        華中科技大學,能源與動力工程學院,教授。

                            研究方向

                              1. 第一性原理計算:半導體中電子-聲子與聲子-聲子耦合、電子之合金與缺陷散射。
                              2. 分子動力學模擬:二維材料之晶界/缺陷構型及熱學與力學性質。
                              3. 經典傳熱學:交替方向隱式差分法、熱相變材料的熱傳遞與結晶行為。
                              4. 機器學習:功能材料的熱學與電學輸運性質。

                            科研項目

                            代表性論文與專利

                              1. Z. Ding, J. Zhou, B. Song, M. Li, T. H. Liu, and G. Chen, “Umklapp scattering is not necessarily resistive”, Physical Review B: Rapid Communications 98, 180302(R)?1?6, 2018.
                              2. T. H. Liu, B. Song, L. Meroueh, Z. Ding, Q. Song, J. Zhou, M. Li, and G. Chen, “Simultaneously high electron and hole mobilities in cubic boron-V compounds: BP, BAs and BSb”, Physical Review B: Rapid Communications 98, 081203(R)?1?7, 2018.
                              3. F. Tian, B. Song, X. Chen, N. K. Ravichandran, Y. Lv, K. Chen, S. Sullivan, J. Kim, Y. Zhou, T. H. Liu, M. Goni, Z. Ding, J. Sun, G. A. G. U. Gamage, H. Sun, H. Ziyaee, S. Huyan, L. Deng, J. Zhou, A. J. Schmidt, S. Chen, C. W. Chu, P. Y. Huang, D. Broido, L. Shi, G. Chen, and Z. Ren, “Unusual high thermal conductivity in boron arsenide bulk crystals”, Science 361, 582?585, 2018.
                              4. J. Zhou, H. Zhu, T. H. Liu, Q. Song, R. He, J. Mao, Z. Liu, W. Ren, B. Liao, D. J. Singh, Z. F. Ren, and G. Chen, “Large thermoelectric power factor from crystal symmetry-protected non-bonding orbital in half-Heuslers”, Nature Communications 9, 1721?1?9, 2018.
                              5. Z. Liu, J. Mao, T. H. Liu, G. Chen, and Z. Ren, “Nano-microstructural control of phonon engineering for thermoelectric energy harvesting”, MRS Bulletin 43, 181?186, 2018.
                              6. T. H. Liu, J. Zhou, M. Li, Z. Ding, Q. Song, B. Liao, L. Fu, and G. Chen, “Electron mean-free-path filtering in Dirac material for improved thermoelectric performance”, Proceedings of the National Academy of Sciences 115, 879?884, 2018.
                              7. F. Tian, B. Song, B. Lv, J. Sun, S. Huyan, Q. Wu, J. Mao, Y. Ni, Z. Ding, S. Huberman, T. H. Liu, G. Chen, S. Chen, C. W. Chu, and Z. Ren, “Seeded growth of boron arsenide single crystals with high thermal conductivity”, Applied Physics Letters 112, 031903?1?4, 2018.
                              8. Z. Ding, J. Zhou, B. Song, V. Chiloyan, M. Li, T. H. Liu, and G. Chen, “Phonon hydrodynamic heat conduction and Knudsen minimum in graphite”, Nano Letters 18, 638?649, 2018.
                              9. M. Li, Q. Song, W. Zhao, J. A. Garlow, T. H. Liu, L. Wu, Y. Zhu, J. Moodera, M. H. W. Chan, G. Chen, and C. Z. Chang, “Dirac-electron-mediated magnetic proximity effect in topological insulator/magnetic insulator heterostructures”, Physical Review B: Rapid Communications 96, 201301(R)?1?5, 2017.
                              10. Q. Song, T. H. Liu, J. Zhou, Z. Ding, and G. Chen, “Ab initio study of electron mean free paths and thermoelectric properties of lead telluride”, Materials Today Physics 2, 69?77, 2017.
                              11. M. Li, Q. Song, T. H. Liu, L. Meroueh, G. Mahan, M. S. Dresselhaus, and G. Chen, “Tailoring superconductivity with quantum dislocations”, Nano Letters 17, 4604?4610, 2017.
                              12. T. H. Liu, J. Zhou, B. Liao, D. J. Singh, and G. Chen, “First-principles mode-by-mode analysis for electron-phonon scattering channels and mean free path spectra in GaAs”, Physical Review B 95, 075206?1?11, 2017.
                              13. T. H. Liu and C.C. Chang, “Anisotropic thermal transport in phosphorene: effects of crystal orientation”, Nanoscale 7, 10648?10654, 2015.
                              14. Y. C. Chen, S. C. Lee, T. H. Liu*, and C. C. Chang*, “Thermal conductivity of boron nitride nanoribbons: anisotropic effects and boundary scattering”, International Journal of Thermal Sciences 94, 72?78, 2015.
                              15. T. H. Liu, Y. C. Chen, C. W. Pao, and C. C. Chang, “Anisotropic thermal conductivity of monolayer MoS2 nanoribbons: chirality and edge effects”, Applied Physics Letters 104, 201909?1?5, 2014.
                              16. T. H. Liu, C. W. Pao, and C. C. Chang, “Mechanical mutability of polycrystalline graphene from atomistic simulations”, Computational Materials Science 91, 56?61, 2014.
                              17. T. H. Liu, S. C. Lee, C. W. Pao, and C. C. Chang, “Anomalous thermal transport along grain boundaries of bicrystalline graphene nanoribbons from atomistic simulations”, Carbon 73, 432?442, 2014.
                              18. T. H. Liu, C. W. Pao, and C. C. Chang, “An analytical model for calculating thermal properties of two-dimensional nanomaterials”, Applied Physics Letters 103, 171909?1?5, 2013.
                              19. T. H. Liu, C. W. Pao, and C .C. Chang, “Thermal response of grain boundaries in graphene sheets under shear strain from atomistic simulations”, Computational Materials Science 70, 163?170, 2013.
                              20. M. Y. Lin, W. C. Guo, M. H. Wu, P. Y. Wang, T. H. Liu, C. W. Pao, C. C. Chang, S. C. Lee, and S. Y. Lin, “Low-temperature grown graphene films by using molecular beam epitaxy”, Applied Physics Letters 101, 221911?1?4, 2012.
                              21. T. H. Liu, C. W. Pao, and C. C. Chang, “Effects of dislocation densities and distributions on graphene grain boundary failure strengths from atomistic simulations”, Carbon 50, 3465?3472, 2012.
                              22. C. W. Pao, T. H. Liu, and C. C. Chang, D. J. Srolovitz, “Graphene defect polarity dynamics”, Carbon 50, 2870?2876, 2012.
                              23. A. Y. Lu, S. Y. Wei, C. Y. Wu, Y. Hernandez, T. Y. Chen, T. H. Liu, C. W. Pao, F. R. Chen, L. J. Li, and Z. Y. Juang, “Decoupling of CVD graphene by controlled oxidation of recrystallized Cu”, RSC Advances 2, 3008?3013, 2012.
                              24. T. H. Liu, G. Gajewski, C. W. Pao, and C. C. Chang, “Structure, energy, and structural transformations of graphene grain boundaries from atomistic simulations”, Carbon 49, 2306?2317, 2011.

                            所獲榮譽和獎勵

                              2012 臺灣力學學會,博士學位論文獎(熱流與能源組)
                            吉利彩票app下载